Skip to main content Skip to navigation

Celebrating 10 Years: A Big Thanks to You

“I’ve been proud to support the School for Global Animal Health because your work saves lives—in Africa and throughout the developing world. I’m happy to see that your efforts over the past decade have earned the school recognition as the preeminent institution of its kind. This gives you an even greater opportunity over the coming decade to substantially improve the quality of life for the families, communities, and nations in need of your expertise.”
—Paul G. Allen on the 10th anniversary of the founding of the school

Global health 10 year anniversary

Because of the generous support of Paul G. Allen and our hundreds of other private donors, the Allen School’s work has reached places as far away as Tanzania and Guatemala, and as close as right here in our very own Washington state. Over the last 10 years, we have become a preeminent global health program nationally and internationally. We continue to work directly with communities on three continents to improve the health of animals and people all over the world. We want to share with you just a few examples of our impact through innovative research and local programs. Impact that you help make possible.

Ending human rabies deaths by 2030.
Rabies is the deadliest zoonotic disease on the planet. More than 59,000 people die from it each year and about half of those deaths are children. Our research discoveries are helping to increase the effectiveness of dog vaccination campaigns. In Africa, dogs spread the disease to humans and wildlife, including lions. By vaccinating 70 percent of the dog population in Tanzania and Kenya, we can stop the spread of rabies.

Preventing the emergence and spread of antibiotic resistance.
Poor sanitation can harbor resistant bacteria that spread locally and globally Discovering causes for increases in antibiotic use and the spread of resistance, our scientists have helped implement ways to reduce infection and the spread of resistant bacteria in poor communities worldwide, which not only protects those communities but helps preserve effective antibiotics here in Washington state.

Improving human nutrition and childhood education.
Healthier livestock means better nutrition for mothers and their children. Our research has led to interventions to improve access to food and has shown that when cattle are vaccinated and protected from disease, the increased income is directed to education of girls.

Why Keep Chickens? A Chat with Tanzanian Farmers

Notes from the Field

by Zoë Campbell, a doctoral student in the Paul G. Allen School for Global Animal Health. This column is Campbell’s personal account giving a first-hand glimpse of her research in Tanzania to improve the lives of animals and people.

A farmer in the Arusha region next to her chicken coop.
A farmer in the Arusha region next to her chicken coop.

A Tanzanian village is not complete without chickens. Hens scratching in the dirt for insects, dusty chicks pushing their tiny bodies through tall grass to follow their mother, roosters delightedly crowing at all hours. They are the most common form of livestock, kept by 48 percent of rural households. As a graduate student working under the Program for Enhancing Health and Productivity of Livestock, I want to understand why some households vaccinate their chickens and others do not.

A group of farmers assemble in the shade of a tree in Chikuyu, a village in the Singida region in central Tanzania. Rains came last night, and thoughts turn to planting rice in the paddies on the edge of the village. The legs of the plastic chairs sink into the moist, sandy soil. Despite other responsibilities, everyone is here, curious about what the guests will say about Newcastle disease, which afflicts their chickens. It is certainly a problem, passing through the village and killing chickens, especially in September when the weather is cold and windy. Most of the farmers here today remember the 150 chickens they began raising as a group back in 2011; Newcastle disease killed all but forty. Today, the group has 10 birds. A spacious two-room chicken coop stands empty behind us as a reminder of better days. As I walked towards the group accompanied by my research assistant and the ward livestock officer, I heard one of the women whisper to her neighbor, “They are going to ask difficult questions.” There could not be a more fitting segue into the questions I had prepared for the morning. One joy of being both a researcher and a foreigner is that I can ask questions that in their simplicity is fitting to a four-year-old. For example, why do you keep chickens?

The answers come fast. For income, says a man sitting on the end of the log. For food, adds the woman next to him. If there is a problem at home, someone explains, you can sell a chicken. If someone gets sick, you can pay for the hospital bill and other expenses. By selling a chicken or eggs, you can help children at school pay fees or buy notebooks. “I paid all my village contributions last year by selling two chickens,” an older man proudly says.

There is now a pause, and people sip their sodas. Kenan Mwakalinga, a research assistant who has accompanied me since we began conducting focus groups in his home region of Mbeya, is patient and waits out the silence. Chickens are a household resource. A tall, young man in his early twenties who hasn’t spoken yet clears his throat. “When I watch my chickens, I feel happy. They lower my blood pressure. They refresh my mind.” Our final contribution comes from a mama dressed in bright kitenge fabric who has already identified herself as the comedian of the group. Sometimes when you are doing the tasks of the day, you get lazy and drop things, she says. The chicken will come and eat it. “In problems, the chicken is there. In cleaning, the chicken is there!”

True, the ultimate question is difficult. Why are some of these farmers vaccinating and others are not? Beginning in late April 2017, I administered a questionnaire to 500 households in six villages. The aim is to identify challenges to vaccination and factors associated with households successfully vaccinating. Still, I am convinced there is wisdom in the simple questions and conversations with the focus groups. Understanding more about the relationship farmers have with their chickens may help to explain how they think about vaccines, and lead to solutions that help more farmers prevent unnecessary losses due to Newcastle disease.

Zoe Campbell talks with vet officer and villager
Zoë Campbell (back, left), research assistant Kenan Mwakalinga (back, right), and Dr. Martin Halid, ward
veterinary officer (front, right) talking with a villager.

Vaccinating increases family wealth, girls’ education

A Maasai man herds grazing cattle.

Vaccinating increases family wealth, girls’ education

by Marcia Hill Gossard ’99, ‘04

A Washington State University-led research team found households in rural Africa that vaccinate their cattle for East Coast fever increased their income and spent the additional money on food and education. Researchers also found that when fewer cattle died from the fever, girls were more likely to attend secondary school.

“When households vaccinate, it increases their wealth and income and sets them on a trajectory to provide education for their children,” said lead author Tom Marsh, professor in WSU’s School of Economic Sciences and the PaulG. Allen School for Global Animal Health.“Vaccinating is a way for households to pull themselves out of poverty.”

“And it has an intergenerational effect ifa family can spend more of their resources on education, especially for girls,” he said.

More milk, fewer antibiotics

Published this week in the journal Science Advances (http://advances.sciencemag.org/content/2/12/e1601410), the study foundthat vaccinating increased a household’sincome because fewer cattle died anddisease free cattle produced more milkto feed the family or could be sold in themarketplace.

Households also saved money because vaccinated cattle did not need as many antibiotic treatments or to be sprayed as often for ticks, which spread the disease. “We are interested in understanding how the health of livestock translates into household decisions and meets sustainable development goals,” said Marsh. “For example, concern about loss of milk production drives the adoption of vaccines because it is so important to households and children.”

Leading cause of calf death

Caused by the parasite Theileria parva,East Coast fever is spread from diseased cattle to healthy cattle through tick bites.The disease can spread quickly and infect cattle throughout the community.“East Coast fever is one of the most devastating cattle diseases,” said Marsh.“It is the leading cause of calf death in East Africa.”For pastoral families, cattle are a main source of income. Losing even one to disease can negatively affect an entire family

Broader implications for antibiotic resistance

Households that vaccinated used fewer antibiotics to treat animals, so the widespread adoption of vaccinations could have larger global health benefits. “We need to think long term about the use of antibiotics and antibiotic resistance, as well as vaccines,” said Marsh. “If organizations are going to invest more money on vaccines, then besides the known effects—such as fewer cattle deaths—we need to understand the indirect effects.“Developing better vaccines and easier ways to distribute them could have broad societal effects,” he said.

Meet the Paul G. Allen School for Global Animal Health’s New Director: Five Questions with Dr. Tom Kawula

tom kawula
Can you tell us a little about yourself?
For the past 34 years when anyone asked me this question all I had to do was say that I was born and raised in Idaho, and it was enough to launch an entire dinner conversation. I’ve enjoyed describing to people what it was like to grow up in the west, and the fact that Idaho borders Washington and Canada, not Illinois. I guess I’m going to have to find a new opening line. My wife Carol and I have lived the majority of our lives in North Carolina, and we have grown some deep roots and lifelong friendships. I have to confess that we have become accustomed to fall weather lasting through Christmas, winter ending in February, and thunder storms that will knock your socks off. Oh, and grits. Do any restaurants in Pullman sell slow cooked grits?

What excites you most about your new position as director of the Allen School?
The short answer is that the Allen School’s mission and approach to improving global health and health disparities reflects my personal values and professional goals. Like most people I want to work at something that is meaningful and has lasting positive impact. At the heart of the school’s mission is that most human health issues are inextricably linked with animal health, but it is more complicated than simply knowing some infectious agents can jump species. The school was launched with the understanding that individual disciplines cannot adequately address human or animal health. Collaborative research across disciplines is something I have advocated throughout my career. I am hopeful I can help to steer the school’s developing culture to one of mutual respect, collaboration, and research excellence that will benefit animal and human health. Another big draw for me is WSU is launching a medical school, which represents a huge opportunity for creating efforts at solving complicated human and animal health issues.

Can you share a little about your career?
I went to the University of North Carolina at Chapel Hill for my doctorate because at the time it was one of the few places where faculty were applying new molecular biology approaches to understanding infectious disease processes. After a postdoc at North Carolina State College of Veterinary Medicine, I got my first faculty job at Cornell University College of Veterinary Medicine. In 1992, I returned to Chapel Hill where I was faculty until now. My research includes understanding pathogenic mechanisms of infectious agents and how they relate to human health. I also learned very early on that I love, and am pretty good at, graduate student training and career development. During the six years I was the director of the Department of Microbiology and Immunology’s graduate studies, we averaged 50 doctoral students in our program, and in the graduate school I developed interdisciplinary research and education programs. More recently I directed a National Science Foundation funded program to expose undergrads from underrepresented minorities to research in biological sciences.

What might our college be surprised to know about you?
I was a bacteriology and biochemistry major at the University of Idaho, but honestly, at that time, I was a little lost about what I might do for a career until I met professor Lois Miller. A world-renowned geneticist who, among other things, developed Baculovirus cloning and gene expression systems. She was tough, never smiled, and never gave any indication of what she thought of you. On the last day of class, she returned our final exams. She put mine on my desk and said, “Turn it over.” On the back was a note that read: You are a talented fellow. You should consider going into research. “Think about it,” she said. So I did. I saw Lois at a conference about 15 years later. I introduced myself, told her I was an assistant professor at UNC and thanked her for the encouraging note that gave me direction. She looked puzzled and said, “That doesn’t sound like something I would do.”

What is your vision for the Allen School over the next year? Five years?
The Allen School is stocked with talent in a lot of disciplines. One of my first goals is for us to recognize and strengthen the connections between our individual research interests and to take even more collective approaches to solving animal and human health issues. The real glue will come with graduate and post-graduate training programs in global animal health. Graduate training is the single most important factor for making strong interdisciplinary connections. The Allen School is poised to become an international leader in global health. The model established by Drs. Guy Palmer and Terry McElwain is innovative, and my goal is for WSU to be recognized as an international leader in establishing solutions to health problems and disparities.

Dr. Tom Kawula Q&A


Hometown:
Moscow, Idaho

Alma Maters:
University of Idaho
(B.S. and M.S. degrees)

University of North Carolina
(Ph.D. in microbiology and immunology)

Pets:
Always. Currently, “Marshall,” a 5-yearold Corgi.

Hobbies:
Gardening, hiking, skiing. Anything outdoors.

Favorite book:
Angle of Repose by Wallace Stegner. Also his mother’s favorite book.

Family:
Met his wife, Carol, of 34 years in high school. They have three grown children. A daughter, Paige, and two sons, Evan and Graham.

Improving the Health of Children and Dogs in Rural Tanzania

Notes From the Field

by Dr. Felix Lankester, clinical assistant professor in the Paul G. Allen School for Global Animal Health. This column is Dr. Lankester’s personal account giving a first-hand glimpse of his latest scientific work in Tanzania to improve the lives of animals and people.

On February 1, we began our first field season to investigate whether administering mass dog rabies vaccinations, along with mass deworming of children in hard to reach communities such as Maasai villages in northern Tanzania, can more effectively reduce the incidence of both diseases. Our research is a Bill & Melinda Gates Foundation Grand Challenge project entitled Integrating community-directed interventions to eliminate neglected tropical diseases caused by soil-transmitted helminth infections and rabies in Tanzania. It is part of a One Health initiative to link interventions targeting animals and people. By pairing the already effective canine rabies program with the deworming program, we believe we can reach more people and reduce the costs of administering treatment.

GAH-2
Intestinal worms, which infect over a billion people, are the world’s leading cause of physical and intellectual growth retardation.

In the developing world, rabies and intestinal worms, called soil-transmitted helminths, continue to exert significant impacts on public health. Rabies alone kills more than 60,000 people every year, mainly children. Intestinal worms, which infect over a billion people, are the world’s leading cause of physical and intellectual growth retardation. If our research shows that these programs are improved by being administered together, it could have an impact on global efforts to eliminate these two diseases.

treating school kids - 1
Children receiving deworming medication in Tanzania.

On the first day of field activities, having set up our dual clinic in the center of a Maasai village called Oldonyowas in the Loliondo District (just east of the Serengeti National Park), we were doubtful whether anybody would to turn up. However, with the rain holding off and a blue sky over head, we were surprised and delighted to see Maasai villagers coming for treatment, many bringing their children and their dogs with them. And by the end of the first day we had vaccinated just under a 100 dogs and dewormed over 400 people. Not bad for a first day.

The project will eventually target 24 villages, some of which will receive dog vaccination and deworming separately, whilst the rest will receive the integrated approach. This will
allow us to determine whether linking the interventions has an impact on coverage. We are also collecting socio-economic data that will enable us to quantify whether taking an integrated approach to improving animal and human health results in time and cost savings.

GAH-3
More than 60,000 people die worldwide from rabies each year. Most contract the disease from a dog bite.

We are now approaching the half way mark for the project and although we are some way off analyzing the data to see what impact the integrated strategy has on the delivery of these two important health interventions, we have noticed one really interesting finding. Many primary school age children whose parents have not been able to afford to enroll them in school are bringing their dogs to our clinics. As a result, their dogs are being vaccinated and, importantly, these children, who would have been missed by the school based national control programs, have received treatment for worms. This preliminary data is encouraging as local elimination of worms will depend on a large proportion of residents being treated regularly, and if there are large numbers of children who are not attending school, the programs will need to find a way of targeting them too. This new community based integrated approach may be one way to do that.

Using Education to Reduce the Spread of Disease in Rural Guatemala

 

by Maria Reneé Ortiz, a researcher with the Allen School and the Universidad del Valle de Guatemala. 

Candelaria is a small village on the Pacific coast of Guatemala, wedged between the ocean and a series of canals running through mangrove forests. The community relies on very small scale agriculture and fishing for their livelihoods. Living in close contact on a daily basis with livestock, especially pigs, ducks, and chickens, and with its location along a  migratory waterfowl flyway, the area is a “hot spot” for the emergence of new viruses, especially influenza. Together with colleagues at the Center for Health Studies at the Universidad del Valle de Guatemala and the CDC, the Allen School works with the community to increase awareness of zoonotic pathogens and improve community-based surveillance for new diseases. Candelaria, along with the adjoining communities, has implemented their community-based surveillance. This system can match up seemingly isolated events, in either animals or humans, with similar events in not only their community, but in neighboring communities as well. Health-related events are reported to the Ministry of Health and Social Assistance and the Ministry of Agriculture, Livestock and Food from a community level. Maria Reneé Ortiz is in the community on a daily basis, working primarily with women who are responsible for the household livestock and the most likely to detect changes in disease patterns in either the animals or family members. Ortiz has a master’s degree in development from the Universidad del Valle de Guatemala and will be starting a doctoral program with the Allen School in 2016.

Dawn in Candelaria, the day breaks; it will be cloudless and very hot. Following a breakfast with the family I am staying with during my community-based research work on zoonotic infectious diseases, I grab my bicycle and take off to visit several village households to evaluate the backyard livestock and invite the women of the village for our monthly meeting. The monthly meeting, an approach termed “participatory epidemiology”, brings the community together to strengthen their understanding of zoonotic disease spread and identify opportunities and constraints to better detect and report these events. On the way to the first house, I note the animals wandering in the village—dogs laying in the sand, pigs noisily demanding feed, and roosters strutting and crowing. Soon after, I have to hit the brakes because a group of ducks are crossing the street. Letting them pass, I continue on and soon arrive at the first household. The woman of the house, “la señora,” is planting corn and invites me to join her. After planting two small plots, she escorts me to the back of the house where I can see her chickens and ducks, which roam free between the house and the nearby canal.

We talk about the health of her animals and she tells me that there have not been any recent problems. Afterwards, we discuss the health of her family, and I end by inviting her to the community meeting. Saying goodbye, I am back on my bike and on to the next house, a house with a large entrance that requires me to ring the bell before entering. Of course the dogs begin to bark and soon la señora arrives to greet me and sends the dogs to the street. We go to the back of the house where there is a large pen with dogs, chickens, ducks, and pigs intermixed. She offers me a seat in the hammock, and I invite her to the community meeting. La señora tells me she will try her best to attend but that she has not been feeling well. We finish our conversation and I pedal off to the third household of the day. Here the woman is unable to walk, yet this does not stop her from working and taking care of her animals. While she is not one for joining in, her animals are so essential for her economic and food security that it’s worth the effort to learn how to better take care of them. The house has a small kitchen but a large patio that borders the canal. Her husband fishes in the canal every day—there is a large number of fish drying on the ground. Adjacent are two large fenced pens, one with ducks and another with pigs—both are quite dirty, and some chickens have gotten out and are pecking at the drying fish. Just then the phone rings, and I say goodbye and take my leave.

Maria Ortiz
Maria Reneé Ortiz leading a community meeting. Monthly meetings bring the community together to understand how zoonotic diseases spread and identify opportunities to better detect and report these events.

Back on my bike, I stop at a shop and buy a bottle of water. The sun is now scorching hot and I am sweating profusely. Finishing the water, I go to the next house, the last before lunch. As I arrive I observe a large, menacing boar and next to his pen, a rooster and a duck are looking for food scraps. On the other side is a dog nursing her pups and a flock of 30 ducks drinking water. Adjacent is the kitchen and I enter to greet la señora. She offers me a soft drink and a seat on the hammock. We begin talking about the household, and she tells me that recently 10 animals have died. She is worried because others are now looking ill—looking “triste,” or sad in a typical local description. Although she attributes the deaths to the hot weather, she has now isolated the ill animals from those looking ill. Afterwards I invite her to the meeting and she assures me that she will attend. I pedal back to the house where I stay during my visits in time for lunch. The children of the house are waiting for me when I arrive and we visit for a while. Still sweating, I find a chair and drink some more water. Soon la señora calls me for lunch and we all sit together. After lunch, I wait for the sun to drop a bit—chatting with la señora, helping clear the table, and grabbing a shower—before continuing to visit more households. In each of the households, I invite the women to attend the upcoming meeting. My day ends nicely when teenagers in the community invite me to join them at the beach and fish for dinner.

Partnering with Veterinarians and Clients to End Rabies

by Marcia Hill Gossard ’99, ‘04

Boy with puppies and line
The WSU rabies vaccination team sees firsthand how important vaccination is to dog owners. Although many in rural Africa may not be able to pay for the vaccine, they walk many miles to have their dog vaccinated.

 

Beginning in the summer of 2015, the Allen School is partnering with veterinary clinics and their clients to eliminate rabies as a public health problem worldwide. The goal is zero human deaths by 2030.

“We are partnering with veterinary clinics around the country because together we can do more than we could ever do alone,” says Guy Palmer, WSU Senior Director of Global Health.

Each year more than 59,000 people die from rabies worldwide and about half of those deaths are children under the age of 16. In developed countries, such as the United States, rabies is quite rare because of access to vaccinations. But in many developing countries, rabies is not under control. Globally, more than 99% of human rabies deaths are caused by dog bites—almost all of these in Africa and Asia. Vaccinating 70 percent of the dog population will protect humans and wildlife, such as lions, from the disease.

“Rabies is easily preventable with regular dog vaccinations,” says Palmer.

One of the main reasons rabies continues to be so prevalent in many parts of the world is challenges in getting the vaccinations to the most vulnerable people in resource-poor countries, says Palmer. “In many parts of sub-Saharan Africa and Asia where the death rates are the highest, there is no reliable system to get vaccinations to where they are needed most.”

Many areas in rural Africa also do not have electricity; currently the vaccine needs to be stored at cold temperatures. And governments in many countries have historically put their resources into treating the disease with postexposure prophylaxis, a series of post-bite inoculations that must be started within the first 24 hours after a person is bitten by a rabid dog. If it is not administered in time and symptoms appear, the disease is always fatal. Because of the narrow window for treatment and the treatment’s high cost, post-exposure prophylaxis has not been effective in reducing deaths in resource-poor countries.

Research in Tanzania and other countries has now convinced the World Health Organization and national governing bodies that canine vaccination can be effectively used for global elimination, says Palmer. Vaccinations are also a much more cost effective option.

“The direct costs of post-exposure prophylaxis are 20 times higher than the amount spent on dog vaccination in affected countries,” says Palmer. “Even the cost of the vaccine is too much for many families.”

Together with global partners* the Allen School is already making a difference. Each year the vaccination team visits 180 villages in seven districts adjacent to the Serengeti National Park. Each day they vaccinate an average of 300 dogs. The result is that the vaccination zone—a cordon sanitaire—is now rabies free. The Allen School is confident that this rabies-free vaccination zone is an illustrative model for other parts of subSaharan Africa and south Asia.

“We have all the tools needed to eliminate rabies, we only need to deploy them,” says Palmer. “One major challenge is creating a reliable vaccine bank that would provide a consistent and affordable vaccine supply for countries to draw on and then replenish.”

Palmer has set a goal to raise $10 million to develop a reliable vaccine bank and improved distribution in high-risk area of Africa and Asia. Through partnerships with veterinary clinics and others committed to eliminating rabies, Palmer knows they can make an even bigger difference for communities and for the people who live with rabies as a reality every day.

“We have all the tools needed to eliminate rabies, we only need to deploy them.” —Guy Palmer WSU Senior Director of Global Health

“When I am in Africa working with our vaccination team, I see firsthand how important vaccination is to dog owners,” says Palmer. “Although they may not be able to pay in cash for the vaccine, they will walk many miles just to be able have their dog vaccinated.”

The Allen School has partners around the world including the Global Alliance for Rabies Control as an umbrella organization, the World Health Organization, the World Organisation for Animal Health, and the Food and Agriculture Organization. Our research in Tanzania is in cooperation with the Serengeti Health Initiative and the University of Glasgow.

 

Learn how you can help support the WSU Rabies Vaccination Program at EliminateRabies.wsu.edu

 

DSCN0673

Freedom from the Cold Chain by Allowing Villagers to Help Themselves

Notes From the Field

by Dr. Felix Lankester, clinical assistant professor in the Allen School and director of the Serengeti Health Initiative

The WSU Rabies Vaccination Program team vaccinates an average of 500 dogs each day in east Africa.  Each year, 59,000 people die from rabies worldwide; about half are children.
The WSU Rabies Vaccination Program team vaccinates an average of 500 dogs each day in east Africa. Each year, 59,000 people die from rabies worldwide; about half are children.

The sun is not long up. Sitting on the step of my guesthouse, I can already see children walking down the dusty street with their dogs. Most of the dogs are trotting along freely by their owners’ sides, whilst a few are leashed with a piece of twine. One girl strolls past carrying a litter of puppies nestled into a bucket on her head. All are making their way to the center of the village where, in an hour’s time, the Serengeti Health Initiative team will begin vaccinating dogs against canine rabies. But this day will be different. Unlike the normal vaccination campaign the team has carried out around the Serengeti National Park since 2003, this will be a lot more work. Today the team are carrying out a WSU-funded vaccine trial* that will determine whether our hypothesis—that the rabies vaccine is still effective even when it is not stored at cold temperatures—is true.

The significance of confirming the hypothesis cannot be overstated. For most rural areas in Tanzania, and many other parts of Africa where electricity is yet to arrive, it will mean that batches of vaccines can be delivered to villages and safely stored at ambient temperatures. As a result, rather than waiting for a campaign to come through their village, communities will be able to manage and administer vaccines to their dogs themselves. Because puppies are born frequently, being able to routinely vaccinate any new litter will greatly increase vaccinations rates and, as a result, herd immunity. Unlike in America where the reservoir host for rabies is wildlife species such as raccoons and skunks, in Africa and Asia, where 99% of human rabies cases occur, the reservoir host is the domestic dog. So when dogs are vaccinated, it protects people and other animals including domestic and wildlife species that are not vaccinated.

To test the hypothesis that the rabies vaccines are effective even when stored outside of the “cold chain,” dogs will be immunized with vaccines randomly selected from one of seven batches, with each batch having been stored, for up to six months, at a different temperature. Batch number seven, for example, has had vaccines stored at 37°C (98.6°F) for six months! After receiving a vaccine, each dog will be micro chipped and will have a blood sample collected. One month later the team will return to the same village and will identify all the dogs that have taken part in the trial so that a follow up blood sample can be collected and a cold chain vaccine can be given. In this way the team can be sure that, following the trial, every dog is protected. All the blood samples will be analyzed for rabies antibodies. This will allow us to determine whether the hypothesis is correct: that vaccines stored outside of the cold chain are effective at eliciting a protective immune response.

The first round of immunizations is complete. We now must wait one month before returning to collect samples that will be sent for testing. The results of the test will be known sometime this summer. The battle against this most terrifying disease will continue, yet these children and their dogs may play a crucial role that will determine whether this ancient disease can finally be defeated.

*The trial is conducted in association with MSD Animal Health (Merck Animal Health) using the Nobivac® rabies vaccine.

Learn more about the WSU Rabies Vaccination Program at go.vetmed.wsu.edu/Rabies.

Tracking Animal Disease to Improve Human Health

by Marcia Hill Gossard ’99, ‘04

Victoria_Olsen-Mikitowicz
Victoria Olsen-Mikitowicz (’15 DVM) spent one month in Kenya working on several research projects including the population-based animal syndromic surveillance project, or PBASS. She plans to pursue a career in veterinary public health, education, and research in global animal health.

In rural Kenyan villages where few families have electricity or indoor plumbing, a surprising technology helps researchers study the health of animals and people: the cell phone.

Families who are part of the population-based animal syndromic surveillance project, or PBASS, use their cell phones to call a veterinarian toll free when an animal is sick. More than 70 percent of families participating in the survey have cell phones; only three percent are connected to the electricity grid.

“Mobile telephony is actually very well developed in most of Africa, especially in Kenya,” says Thumbi Mwangi, clinical assistant professor in the Paul G. Allen School for Global Animal Health, who has been collecting data since the survey began in February 2013.

» More …

Visiting Risper Oyogo: Just One of 1,500 Families Allen School Scientists are Following in Western Kenya to Help Improve Health and Wellbeing

Notes From the Field

risper-and-her-herdsman-watch-as-dr-elkanah-otiang-examines-one-of-her-calves
Risper and her herdsman watch as Dr. Elkanah Otiang examines one of her calves.

by Dr. Thumbi Mwangi, assistant research professor in the Allen School

It’s the last Thursday in August and today I am having the Kisumu County medical epidemiologist, Dr. Dickens Onyango, accompany me for a field visit to the Allen School research projects in the Lwak area, by the shores of Lake Victoria. At about 8 a.m., Dickens and I meet up at the West mall, the newest mall in Kisumu, where we quickly grab coffee and set off in one of the Kenya Medical Research Institute (KEMRI) field trucks. Our first stop is 14 kilometers north at the KEMRI Kisian Campus, a beautiful campus with neatly-manicured lawns and rows of well-aligned and mature umbrella trees providing a welcoming cool calm of shade.

Here we only get to exchange a few morning greetings with colleagues, before being joined by Dr. Elkanah Otiang, a young energetic field veterinarian who will often be heard belting a hearty often loud, but pleasant laugh. Elkanah doesn’t like to spend time at his desk, and will find every reason to be in the field talking with farmers and treating their animals. He has a team of 15 animal health assistants and community interviewers that work directly under him in the field, and who are involved in the collection of invaluable surveillance data for the Allen School and its partners.

» More …