UV light may be a greater risk for melanoma than suspected

Two women in lab coats in a lab. Woman in foreground is holding a petri dish and before a boxlike irradiation machine
WSU student Haley Morris and laboratory technician Marian Laughery prepare yeast cells for another round of irradiation inside Professor John Wyrick’s lab.

PULLMAN, Wash. — Studies conducted in yeast show that exposure to ultraviolet light (UV) induces new types of DNA damage that may cause the deadliest form of skin cancer, malignant melanoma.

That’s according to research conducted by a team featuring undergraduate students from Washington State University’s School of Molecular Biosciences. The work, led by WSU researchers John Wyrick and Steven Roberts of the College of Veterinary Medicine, was published today in Cell Reports.

While melanoma has been associated with UV light, this study directly links UV exposure to the atypical mutations known to spread the disease. The results also indicate that UV light can induce a more diverse spectrum of mutations than previously suspected.

“There’s been this debate: how much does UV light cause the mutations that actually cause the cancer?” Wyrick said. “Our research supports that UV light plays a major role in producing mutations specific to the growth and spread of melanoma.”

As in humans, UV light damages DNA and produces mutations in baker’s yeast, making it an excellent model to study how dangerous the resulting mutations can be.

Researchers irradiated yeast cells from 150 yeast colonies with UV lamps 15 times for 8-second intervals over the course of a month. They used UV-C radiation, the strongest form or ultraviolet light. The team then used whole-genome sequencing to identify an estimated 50,000 mutations that occurred in cells due to the UV irradiation.

The team found about half of all the mutations found in the irradiated cells were rare mutations linked to melanoma.

Until now, UV damage in DNA was thought to be confined to two of the DNA bases: C (cytosine) or T (thymine). However, this new research indicates that UV damage also occurs at low frequency at A (adenine) DNA bases, a surprising finding.

WSU students and researchers also showed that a single intense exposure of ultraviolet-B radiation, which is present in sunlight, could also induce the atypical mutations.

Haley Morris, an undergraduate biochemistry major, began working on the research as a first-year student.

“This has a lot of real-world applications and could help identify causes of severe skin cancers,” Morris said. “It’s cool that something I enjoy and am a part of has the potential to help a lot of people.”

Media contacts:

  • John Wyrick, professor, School of Molecular Biosciences, (509) 335-8785, jwyrick@wsu.edu
  • Josh Babcock, news writer, College of Veterinary Medicine, (509) 339-3423, joshua.babcock@wsu.edu

Next Story

Students design outdoor story walk for Keller schools

A group of WSU landscape architecture students is gaining hands‑on experience by designing an outdoor classroom with members of the Confederated Tribes of the Colville Indian Reservation.

Recent News

E-tongue can detect white wine spoilage before humans can

While bearing little physical resemblance to its namesake, the strand-like sensory probes of the “e-tongue” still outperformed human senses when detecting contaminated wine in a recent WSU-led study.

Provost selection process ongoing

WSU expects to name its next provost before the end of April. President Kirk Schulz is actively considering two finalists, with feedback provided by the university community being a key factor in the decision.

Employee Assistance Program hosts special sessions, April 17

Washington State Employee Assistance Program Director Jennifer Nguyen will lead two discussions tomorrow on the topics of change and personal wellbeing. Both presentations will be livestreamed.